A Survey of Forest Structure on Mount Joy By Ali Duffel

Dominica 2004 June 16, 2004 Dr. Lacher Dr. Woolley

Abstract

The area on top of Mount Joy at the end of Fifi road trial is an area of secondary vegetation. A permanent transect 50m by 2m was set up and the forest structure was measured. The diameter at breast height (DBH), canopy cover, species identification, and herbaceous ground cover were the focus of the study. The data collected was used to look at the biodiversity on top of Mount Joy. From the data, a baseline for biodiversity was observed. The data and transect can be used in future years to study the change in biodiversity and the way Mount Joy is affected by different environmental events.

Introduction

The purpose of this project was to set up a modified Gentry plot on the Springfield estate and to collect data on the area. All of the procedures were taken from the Team initiative data may be used in the future to measure the change of biodiversity over time. At the time the transect was measured, Dominica had received no dry season and a continual wet season. This could have an impact on how the vegetation is growing and subsequently measured. website (http://www.teaminitiative.org/). Due to the large scale of the plot used in the Team initiative website, one transect was set up instead of the five parallel transects. From the transect a survey of the ground cover, diameter at breast height, canopy cover, and tree identification was taken. This

Materials

meter tape measure string bamboo measured to 4.5 feet bamboo measured to 1 meter Spherican Densiometer Model-C Flora of Dominica, Part 2: Dicotyledoneae Dominica Nature Island of the Caribbean Springfield's Herbarium database Ziploc bags trash bags PVC pipe drill mallet flagging tape compass GPS receiver

Methods

The area needed for the modified Gentry plot is one with flat land that does not have a drastic change in landscape. The area chosen is on top of Mount Joy at the end of the Fifi road trial, N15° 21.121' W61° 21.782' (Stewart Peck). Since Mount Joy is located on Springfield property it made access to the plot easy.

To set up the plot a minimum of ten pieces of PVC pipe were needed. The pipes did not need to be a specific length because they will be put in the ground. Thus my stakes were about 70cm long. At one end of each piece of PVC a hole was drilled through both sides. This helped in flagging the stakes. A piece of bamboo 1.0 meter long and one 1.3 meter long was needed. The 1.3 meter piece was used to simplify measuring the diameter at breast height (DBH). The piece 1.0 meter long was used to help put up the string and to measure the width of the transect.

To begin setting up the transect a random point on the top of Mount Joy was chosen. At the top I took seven steps forward and established the origin of my transect. From that point the plot was set in a prefect northerly direction. Having the plot set in the perfect northerly direction simplified the placement of the following stakes. Using a mallet helped put the stakes in the ground. It is not impossible to put the stakes in the ground without the mallet, but it does make the job easier. Once the first stake was put in place, the meter tape measure was used to measure a distance of 10 meters in a perfect northerly direction. A compass was needed to make sure the transect followed the correct direction. It was helpful to have someone help at this point. It would have been almost impossible to do it alone. Six stakes were put in a row using this method.

Once the transect was set up the four pieces of PVC that were left over were used to mark off the one meter area on each side of the center line. The modified Gentry plot was composed of a center line that incorporates all vegetation within one meter on each side. To simplify the determination of what vegetation was inside the modified Gentry plot, one piece of PVC was put one meter to the west and one meter to the east of the zero meter stake and the ten meter stake. A string ran from west side stake to west side stake. The same was done for the stakes on the east side. Care was used in running the strings. The string needed to be exactly one meter from the centerline.

Once an area was marked the DBH was measured and recorded. Tree diameters were measured by determining the diameter at 1.3 meters above the ground. This is called diameter at breast height (DBH). Placing the 1.3 meter piece of bamboo against the tree aided in determining where to measure. Since there was no DBH tape in the lab, A meter tape measure was used and the data were later converted into diameter. This

was done using the formula =X/3.14 in an Excel spreadsheet. All trees with a DBH greater than 2.5cm or a circumference greater than 7.9cm are considered trees and are measured. (www.teaminitiative.org) Once a tree was measured, it was tagged with the biodegradable tagging tape and marked with a letter or number. The biodegradable tape was used because it was easy to write on.

For all of the trees that were tagged, the meter tape measure was used to find their distance from the origin. This data was used to plot all the trees on a graph.

Since I had no background knowledge on naming tree species I sought assisance. Nancy Osler was able to go up Mount Joy with me. We were not able to identify many trees in the field, but we did collect samples of the leaves and made notes on characteristics of the trees. At the station Nancy and I used the Springfield herbarium database, *Dominica Nature Island of the Caribbean, Flora of Dominica, Part 2: Dicotyledoneae*, and "Key to the Families of Trees and shrubs at Springfield Centre for Environmental Protection, Research and Education (formerly Springfield and Mt. Joy Estates) Dominica, W.I.". With the help of these four resources we were able to identify all of the trees to families and most to the genus and species. For the rest of the ground vegetation samples were taken and later identified by Nancy.

At each stake five canopy cover readings were taken. After they were all taken the average was found using the formula =Average(X,X,X,X,X) in an Excel spreadsheet. To find the basal area for each tree, I used the formula = $3.14(DBH/2)^2$ in the excel spreadsheet.

Results

Found on the Excel spreadsheet.

Discussion

"The structure of a plant community refers to the vertical arrangement and spatial organization of the plants." (340, *Forest Ecology*) Since no one species has a numerical percentage of eighty percent or greater, the stand where the plot was taken from is classified as an uneven-aged stand. Do to the uneven-aged nature, the stand will automatically be less dense than an even-aged stand. This is caused by the competition that arises between the dominant trees and the saplings that are found in the suppressed and intermediate site classes (Appendix E). From the samples taken of the trees found in the dominant and codominant class, leaves are smaller in comparison to those of the same species found in the suppressed and intermediate classes. This is due to the trees ability to change its morphology as it matures. The higher up the tree is in the canopy, the less the tree needs to fight to capture sunlight. "Trees that are exposed to the physical stresses of wind, to high light intensities in the upper crown, and to rapid transpiration stress have strong woody stems and branches, large spreading or deep root systems, and bear foliage with xeromorphic characteristics." (342, *Forest Ecology*)

When comparing the percentage of dominant trees to the percentage of suppressed trees, there are almost seven times the amount of suppressed trees as the amount of dominant trees (figure 3). This is due to the large dominant tree's ability and necessity to accumulate nutrients and water close to its roots. Having a dominant tree in an area stunts the growth of other trees in the vicinity.

Two of the tree families found in the dominant site class are Boraginaceae and Lauraceae. These trees were classified in the dominant class because they formed the

upper part of the canopy and exhibit dominance over the other trees. These trees are often called the wolf trees because their seeds are the ones that regenerate most of the forest floor. The data found in tables 2 and 4 shows the comparison. Looking at table 4 Myrtaceae and Malpighiaceae should be found in the dominant class as well. This could be a sign of increasing biodiversity. Another example of increasing biodiversity is found in the list of herbaceous ground cover found in the transect. The Fabaceae Inga laurina is a tree species that is only found in the sapling stage. Due to the fact that there are no mature inga trees in the area lends itself to the idea of increasing biodiversity. Another instance is the documentation of the Rubiaceae. The Rubiaceae was found only once in the DBH readings. This means that there was only one tree with a diameter at 1.3 meters of 2.5cm or greater. The Rubiaceae that was found had a DBH of 3.40cm. A DBH of 3.40cm is classified in the suppressed class. This indicates that these species are either encroaching in the area of Mount Joy but have not been around long enough to grow into the dominant class or are on a decline. With the data I have I am not able to make a definite conclusion

When looking at the basal area of all the trees, the two leading families are Boraginaceae and Lauraceae. (Appendix B table 5) Comparing this table to the "Trees per Family" table (Appendix B table 4) reveals the large size of the boraginaceae and the Lauraceae compared to the relatively small size Dichapetalaceae and Rubiaceae. Trees with a larger basal are tend to be in stands that are less densely crowded. The less dense stands give way to an open under story which benefits wildlife and biodiversity.

One problem we ran into was the absence of flowers and fruits. During the time of late May and early June, few trees on Mount Joy are flowering or producing fruit. This left us with just the leaves and trunk of the tree for identification purposes.

Conclusion

After viewing all the data, there is evidence of a possible increase in biodiversity. The large number of Rubiaceae and Inga are representative of this. The area on Mount Joy where the transect is located is only about 30 years old (Nancy). The abundance of species and the degree of growth shows the rapid growth rate found in the tropics. "Diversity for most groups of organisms generally decreases from lowland tropical to high-latitude or high-altitude ecosystems. (377, *Forest Ecology*) This ability for rapid regeneration and growth allows for a quick turn around time for new species encroaching in the area. On the other hand, the data will also reveal the decline of certain species. More monitoring of the area will produce more complete data. The data we do have points to a maturing of the forest on top of Mount Joy.

Sources

Nancy Osler

Stewart Peck

www.teaminitiative.org

- Nicholson, Dan H et al. (1991) *Flora of Dominica Part 2: Dicotyledoneae*. Smithsonian Contributions to Botany number 77. Smithsonian Institution Press. Washington D.C.
- Kimmins, J.P. (1987) Forest Ecology. Macmillan Publishing Company, New York, New York.
- Drew, Allan P. "Key to the Families of Trees and Shrubs at Springfield Centre for Environmental Protection, Research and Education (formerly Springfield and Mt. Joy Estates) Dominica, W.I."
- Lack, Andrew J, Caroline Whitefoord, Peter G.H. Evans, and Arlington James. (1997) Dominica Nature Island of the Caribbean. Faytag Printing, Sussex.

Appendix A

Family	Genus	Species	Common name
Myrtaceae	Eugenia		
Lauraceae	-		
Lauraceae			
Myrtaceae			
Dichapetalaceae			
Lauraceae			
Mvrtaceae			
Boraginaceae	Cordia	suculata DC.	"Bois Bre"
Lauraceae			
Lauraceae			
Lauraceae			
Malnighiaceae	Runchosia	polystachia (Andrews) A.P. Candolle	Rois masse'
Boraginaceae	Cordia	suculata DC	"Bois Bre"
Malnighiaceae	Bunchosia	polystachia (Andrews) A P. Candolle	Bois masse'
Malpighiaceae	Bunchosia	polystachia (Andrews) A.P. Candolle	Bois masse'
Malpighiaceae	Bunchosia	polystachia (Andrews) A.I. Candolle	Bois masse
Malpighiaceae	Bunchosia	polystachia (Andrews) A.F. Candolle	Dois masse
Martagaaa	DUITCHUSIA	polystachia (Anurews) A.P. Candolle	Dois masse
Nynaceae	Cardia	availate DC	"Daia Dra"
Boraginaceae	Cordia	suculata DC.	"Bois Bre"
Boraginaceae	Cordia	Suculata DC.	BOIS BIG
Lauraceae	0 "		"D · D "
Boraginaceae	Cordia	suculata DC.	"Bois Bre"
Boraginaceae	Cordia	suculata DC.	"Bois Bre"
Erythroxylaceae	Erythroxylum	squamatum Sw.	"Ti feuille"
Myrtaceae	Myrcia	Splendens (Sw.) DC.	
Myrtaceae	Myrcia	Splendens (Sw.) DC.	
Lauraceae			
Erythroxylaceae	Erythroxolem	squometum	
Myrtaceae	Myrcia	Splendens (Sw.) DC.	
Malpighiaceae	Bunchosia	polystachia (Andrews) A.P. Candolle	Bois masse'
Myrtaceae	Eugenia		
Lauraceae			
Lauraceae			
Myrtaceae	Eugenia		
Boraginaceae	Cordia	suculata DC.	Bois Bre
Erythroxylaceae			
Rubiacea			
Myrtaceae			
Myrtaceae	Syzygium	jambos (L.)	
Myrtaceae	Syzygium	jambos (L.)	
Myrtaceae			Zedcrab
Myrtaceae	Syzygium	jambos (L.)	
Malpighiaceae			
Malpighiaceae			
Malpighiaceae			

Tree	DBH	Position	Quadrant	Basal Area
A	2.90	39.4	4740A	6.51
С	6.40	40.0	0040B	31.76
D	5.80	37.9	9038B	26.04
E	4.81	37.6	6938B	17.92
G	3.31	37.3	3538B	8.50
Н	3.57	33.0	0033B	9.86
I	17.32	37.8	3038B	232.62
J	5.35	35.6	6536A	22.19
K	4.75	35.2	2536A	17.45
L	7.42	32.6	6033B	42.67
Μ	13.18	32.1	1033A	134.72
Ν	11.78	31.6	6032A	107.61
0	20.73	27.1	1028A	333.12
Р	20.19	25.7	7026A	315.95
Q	19.08	25.2	2026B	282.03
R	6.62	24.5	5025A	34.01
S	9.81	24.5	5025B	74.57
Т	10.22	20.2	2021A	80.99
U	3.69	20.5	5021A	10.58
V	5.00	20.0	0020A	19.38
W	24.71	20.0	0020B	473.33
Х	54.90	23.2	2024B	2,336.24
Y	49.94	35.6	6536A	1,932.57
Z	9.00	19.5	5020B	62.78
1	15.80	18.0	0018A	193.47
2	17.10	14.3	3015A	226.62
3	21.10	14.5	5115B	345.04
4	11.00	13.5	5014B	93.78
5	17.20	12.5	5013B	229.28
6	7.40	9.3	3010B	42.44
7	7.10	9.4	4310B	39.07
8	64.10	9.2	2510A	3,184.33
9	14.70	8.9	959A	167.47
10	10.20	3.4	104A	80.63
11	20.00	14.7	7515B	310.00
12	6.62	40	.541B	34.01
13	3.40	43	.244B	8.97
14	22.45	44	.245A	390.57
15	12.64	44	.345B	123.89
16	3.44	45.1	1546A	9.17
17	9.62	46.0)747A	71.78
18	12.87	45.5	5346A	128.36
19	3.18	48	.549A	7.86
20	3.33	49	.250A	8.60
22	3.28	47.9	9148A	8.34

Appendix B

Total DBH key	
Lauraceae	165.73
Myrtaceae	163.68
Boragibnaceae	159.62
Malpigaceae	84.68
Erythroxylaceae	26.62
Dichapetalaceae	3.41
Rubiaceae	3.40

DBH per tree key

To corralate the numbers to the actual size, look at the above data.

Tree Classification Dominant 3

Dominant	3
Codominant	10
Intermediate	11
Surpressed 2	21

Trees per family	
Myrtaceae	14
Lauraceae	10
Malipighiaceae	9
Boraginaceae	7
Erythroxylaceae	3
Dichapetalaceae	1
Rubiaceae	1

GPS readings (from Stewart Peck)

 $N15\infty 21.121'$ W61 $\infty 21.782'$ 550m Ridge at top of road above Mt. Joy

Canopy Cover								
Position	Percent					Average		
0m		74.88	82.16	71.76	72.8	82.16	76.96	
10m		90.48	88.4	95.68	93.6	96.72	93.25	
20m		85.28	95.68	93.6	87.36	99.84	93.14	
30m		80.08	91.52	82.16	69.68	66.56	77.77	
40m		81.12	73.84	85.28	78	69.68	77.19	
50m		71.76	80.08	81.12	86.32	76.96	80.08	
Total Basal Area:								
Myrtaceae		1,821.45	15%					
Lauraceae		4,432.67	36%					
Dichapetalaceae		8.50	0%					
Boraginaceae		4,964.06	40%					
Malpighiaceae		881.40	7%					
Erythroxylaceae		190.56	2%					
Rubiaceae		8.97	0%					
	total:	12,307.61						
table 5:								

Appendix C

	shrubs found in the area	
Meter 10		
	Piperaceae Peperomia	herbaceous shrub
	Convolvulaceae	vine
		tree seedling
		tree seedling
	Murtaesaa Eugania	
	"ribbion grass"	arass
Meter 20	hobion grass	grass
	unknown D	vine
	unknown E	tree seedling
	Fabaceae Inga laurina (Sw.) Willd. "Pois Doux"	tree seedling
	unknown F	shrub
	Polypodeace	fern
	"ribbion grass"	grass
	unknown G	tree seedling
	unknown H	fern
	unknown I	fern
Mater 00	unknown J	shrub
Meter 30	Eshaceae Inga Jaurina (Sw.) Willd "Pois Douy"	trop coodling
	Linknown C	tree seedling
	Heliconiaceae Heliconia	herbaceous vegetation
	pasa florace	vine
	aerace	hervaceous vegetation
	ribbion grass	arass
	unknown K	ground cover
Meter 40		
	unknown B	tree seedling
	unknown E	tree seedling
	Fabaceae Inga laurina (Sw.) Willd. "Pois Doux"	tree seeding
	unknown F	vine
Meter 50		
	Fabaceae Inga laurina (Sw.) Willd. "Pois Doux"	tree seedling
	Induori grass	grass
		forn

Appendix D

. .

Appendix D

Key to the Families of Trees and Shrubs at Springfield Centre for Environmental Protection, Research and Education (formerly Springfield and Mt. Joy Estates) Dominica, W.I.

by

Allan P. Drew State University of New York College of Environmental Science and Forestry Syracuse, New York 13210

The following key is based on vegetative rather than floral characteristics and is designed to identify with a 10X hand lens the correct families of individual dicotyledonous trees and shrubs found on the Springfield property of the Archbold Tropical Research and Education Consortium in Dominica. Springfield Centre is located at 380m elevation in the Antrim Valley north of Roseau in the lower rain forest zone. Secondary forest characterizes most of the property which between 1936 and 1979 was cultivated and comprised of Springfield and Mt. Joy estates.

Species belonging to thirty-five families of Dicotyledoneae including three sub-families have been identified. Names of genera appear in parentheses when the genera noted are the only ones having the given character(s) and are the only genera of the family found at Springfield. New families, if found, will be added as necessary in the future and the key updated.

Vegetative Characteristic	Family
 Compound leaves Simple leaves 	2 9
 Opposite leaves Alternate leaves 	Bignoniaceae 3
 Leaves with stipules Leaves without stipules 	4 6
 Leaves imparipinnate Leaves paripinnate or bipinnate 	Papilionaceae (Fábaceae) 5
 Devision at even Leaves bipinnate with nectaries Leaves paripinnate or bipinnate without nectaries 	Mimosaceae (Fabaceae) Caesalpiniaceae (Fabaceae)
 Leaves with pellucid dots Leaves without pellucid dots 	Rutaceae

 Leaves with mango or turpentine odor and without bitter taste Leaves without mango or turpentine odor 	Burseraceae 8
 Leaves with bitter taste, clear sap Leaves with milky sap 	Simaroubaceae Caricaceae
 Leaves opposite or whorled Leaves alternate 	10 16
 Leaves with stipules Leaves without stipules 	11 12
 Stipules interpetiolar Stipules intrapetiolar or free 	Rubiaceae Malpighiaceae
 Leaves with scalariform veins Leaves without scalariform veins 	Melastomataceae 13
 Leaf veins prominent Leaf veins obscure, finger-like with creamy latex 	14 Clusiaceae
14. Leaves with pinnate veins and with fused marginal vein,	Myrtaceae
14. Leaves with pinnate, but open veins	15
 Branchlets quadrangular Branchlets with white latex 	Verbenaceae Apocynaceae
 Leaves with stipules Leaves without stipules 	17 27
 Bark stringy when peeled from twig Bark not stringy when peeled from twig 	18 21
 Stems mucilaginous, leaves 3-5 veined Stems not mucilaginous, leaves 3-5 veined 	19 Elaeocarpaceae
 Stipules revolute Stipules not revolute 	Bombacaceae 20
 Petals yellow (<u>Guazuma</u>) or united sepals a cream color (<u>Sterculia</u>) Petals orange-red to dark crimson (<u>Hibiscus</u>) 	Sterculiaceae Malvaceae
 Stems with white latex Stems without white latex 	22 23

22. Prominent terminal stipule scar, false marginal leaf vein,	Moraceae
22. Extrafloral nectaries present, leaves spirally arranged	Euphorbiaceae
23. Stems with brownish exudation, prominent terminal stipule scar,	Cecropiaceae
23. Stems without exudation	24
24. Stipules intrapetiolar24. Stipules not intrapetiolar	25 26
 Stipules hairy, bark brittle Stipules not hairy, bark not brittle, central leaf area different texture 	Chrysobalanaceae Erythroxylaceae
26. Leaf nodes swollen, inflorescence a vertical spike26. Trunk fluted, blaze turns orange	Piperaceae Dichapetalaceae
27. Bark stringy27. Bark not stringy	28 30
 28. Leaves aromatic, distichous 28. Leaves not aromatic or distichous 	Annonaceae 29
 Sympodial branching, verticillate at ends (<u>Cordia</u>) Nonsympodially branched shrub or tree to 15m, bitter inner bark 	Boraginaceae Thymalaeaceae
30. Leaves aromatic (or with bad odor)30. Leaves nonaromatic	31 34
 Leaves with mango odor, resinous exudate is dark upon drying Leaves with other than mango odor 	Anacardiaceae 32
32. Leaves with bad odor, often having stellate hairs32. Leaves with pleasant smell	Solanaceae 33
33. Leaves with pellucid dots, citrus smell33. Leaves without pellucid dots, spirally arranged, sulcate stem	Rutaceae Lauraceae
34. Leaves with white latex34. Leaves with other than white latex or none	35 36
35. Turbinate buds, fruit in pairs, finger-like glands35. Buds not turbinate, bottle-shaped petiole	Apocynaceae Sapotaceae

...

36. Leaves with reddish exudation, falsely whorled long branches, distichous

Myristicaceae

 Leaves without latex, obovate, crowded near branch ends, sympodial branching

Combretaceae

Acknowledgements:

I am grateful to Dr. Humberto Jiménez of the Tropical Science Center, San Jose, Costa Rica for helpful instruction in tropical dendrology and to Dr. Steven Hill of the Illinois Natural History Survey whose Springfield herbarium collection of the flora of Dominica was invaluable in the preparation of this key.

May 1, 2001

Appendix E

